
AN OVERVIEW REPORT ON SOFTWARE RE- AND REVERSE ENGINEERING

Srinivasa Reddy A.1 Murali Krishna A.2 Srinivasulu P.3

1Asst Prof in IT, MLEC Singarayakonda, India
2Professor in CSE, MLEC Singarayakonda, India

3Assoc Prof in CSE, MLEC Singarayakonda, India
Email: 1srinivas.asr@gmail.com

Abstract

Instability is the nature of any application. An Application may strive for and helps a business or company for
some time (may be 10 or 15 years), during that time it has been corrected, adapted and enhanced many times.
But every time a change is made into the application, unexpected and serious side effects occur. Yet the application
must continue to evolve. Unmaintainable software is not a new problem. In the following sections, we are going
to analyze the Software Re-engineering and Reverse-engineering processes and how they help any application to
maintain the Quality standards.

Keywords: Instability, Re-engineering, Reverse-engineering, Software, Quality.

I. INTRODUCTION

Any Application tends to change in time
according to the Business needs and Customer
Requirements. If we are able to meet the customer
satisfaction levels, then we can say that our product
or application is Quality one. In simple terms we can
define the quality as Customer Satisfaction (1). Many
attributes may contribute to quality like compliant
product, performance, time, Lines of code, less errors,
budget etc. To achieve all the way the quality of an
application or product we have to enhance the existing
application to the customer level and Software Re- and
Reverse engineering processes (2) helps us to achieve
this. Software re-engineering is concerned with re-
implementing legacy systems to make them more
maintainable. Re-engineering may involve
re-documenting the system, organizing and
restructuring the system, translating the system to a
more modern programming language and modifying
and updating the structure and values of the system’s
data. The functionality of the software is not changed
and, normally, the system architecture also remains the
same.

The term software engineering first appeared in
the 1968 NATO Software Engineering Conference and
was meant to provoke thought regarding the current
“software crisis” at the time. Software is set of
programs and rules associated with particular product
and Software Engineering as the application of a
systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software,

and the study of these approaches; that is, the
application of engineering to software.

II. REENGINEERING

Software re-engineering (3) is concerned with
re-implementing legacy systems to make them more
maintainable. Re-engineering may involve
re-documenting the system, organizing and
restructuring the system, translating the system to a
more modern programming language and modifying
and updating the structure and values of the system’s
data. The functionality of the software is not changed
and, normally, the system architecture also remains the
same. Most of the Reengineering works depends on
the data processing. Data Mining and Ware housing
helps us to find out the information which is processes
data and which tells the customer behavior and
customer needs which is very important in improving
the Quality of the product.

From a technical perspective, software
re-engineering may appear to be a second-class
solution to the problems of system evolution. The
software architecture is not updated so distributing
centralized systems is difficult. It is not usually possible
to radically change the system programming language
so old systems cannot be converted to object-oriented
programming languages such as Java or C++. Inherent
limitations in the system are maintained because the
software functionality is unchanged.

However, from a business point of view, software
re-engineering may be the only viable way to ensure
that legacy systems can continue in service. It may be

International Journal on Information Sciences and Computing, Vol. 5, No.1, January 2011 71

too expensive and too risky to adopt any other
approach to system evolution. To understand the
reasons for this, we must make a rough assessment
of the legacy system problem.

Fig 1: Software Re-engineering

Re-engineering a software system has two key
advantages over more radical approaches to system
evolution:

1. Reduced risk: T here is a high risk in
re-developing software that is essential for an
organization. Errors may be made in the system
specification; there may be development problems, etc.

 2. Reduced cost: T he cost of re-engineering is
significantly less than the costs of developing new
software.

The term re-engineering is also associated with
business process reengineering (BPR). Business
process re-engineering is concerned with redesigning
business processes to reduce the number of redundant
activities and improve process efficiency. It is usually
reliant on the introduction or the enhancement of
computer-based support for the process. Process
re-engineering is often a driver for software evolution
as legacy systems may incorporate implicit
dependencies on the existing processes.

Fig 2: Software Re-engineering Process Model

Inventory Analysis provides all the information
that provides a detailed description (size, age, criticality,
budget, personal etc.) of Application.

Document Restructuring mainly deals with
problems of weak documentation which is very

important for any business organization like Software
Requirement Specification (SRS) Document.

Reverse Engineering derives one or more design
and manufacturing specifications for a product by
examining actual specimens of the product.

Code Restructuring mainly deals with legacy
systems which have solid program architecture, but
individual modules were coded in a way that makes
them difficult to understand, test and maintain.

Data Restructuring deals with a program effect of
weak data architecture which is very difficult and
enhance.

Forward Engineering deals with applications
which can be rebuilt using an automated “reengineering
engine”.

Forward engineering starts with a system
specification and involves the design and
implementation of a new system.

Re-engineering starts with an existing system and
the development process for the replacement is based
on understanding and transformation of the original
system.

Fig 3: Forward Engineering

Software Re-engineering mainly deals with
Software Maintenance which includes the four activities:
Error Correction, Adaptation, Enhancement and
Re-engineering. Only about 20 percent of all
maintenance work is spent on “fixing mistakes”. The
remaining 80 percent is spent adapting existing
systems to changes in their external environment,
making enhancements requested by users and
reengineering an application for future use. This is
known as 20-80 rules in software engineering.

III. REVERSE ENGINEERING
Reverse engineering (4) is the process of

analyzing software with the objective of recovering its
design and specification. The program itself is
unchanged by the reverse engineering process. The
software source code is usually available as the input
to the reverse engineering process. Sometimes,

72 International Journal on Information Sciences and Computing, Vol. 5, No.1, January 2011

however, even this has been lost and the reverse
engineering must start with the executable code.

Reverse engineering is not the same thing as
re-engineering. The objective of reverse engineering is
to derive the design or specification of a system from
its source code. The objective of re-engineering is to
produce a new, more maintainable system.

Reverse engineering is used during the software
re-engineering process to recover the program design
which engineers use to help them understand a
program before re-organising its structure. However,
reverse engineering need not always be followed by
re-engineering (5).

Three Reverse Engineering issues must be
addressed: Abstraction level, Completeness and
Directionality. The reverse engineering process starts
with an analysis phase. During this phase, the system
is analysed using automated tools to discover its
structure. In itself, this is not enough to re-create the
system design.

Fig 4: Reverse Engineering

Engineers then work with the system source code
and its structural model. They add information to this
which they have collected by understanding the system.
This information is maintained as a directed graph that
is linked to the program source code.

Fig 5: Reverse Engineering Process

In implementing Reverse engineering, we should
focus on Internal Data Structure and Database
Structure. Reverse engineering helps us to understand
processing (6).

Reverse engineering (RE) is the process of
discovering the technological principles of a device,
object or system through analysis of its structure,
function and operation. It often involves taking
something (e.g., a mechanical device, electronic
component, or software program) apart and analyzing
its workings in detail to be used in maintenance or to
try to make a new device or program that does the
same thing without utilizing any physical part of the
original.

Reasons for reverse engineering:

1. Interoperability

2. Lost documentation

3. Product analysis

4. Digital update/correction

5. Academic/learning purposes

6. Curiosity

7. Learning

8. Lost Code

9. Understandability

IV. SAMPLE EXAMPLE

Let us understand the importance of the Re- and
Reverse engineering concepts using sample example
from Basic Language C.

Let us Take Example of addition program.

Program
#include<stdio.h>
#include<conio.h>
Void main()
{
int salary,basic,da;
clrscr();
printf(“Enter basic,da: “);
scanf(“%d%d”,&basic,&da);
salary=basic+da;
printf(“salary=%d”,salary);
getch();
}

Output
Enter basic,da: 8000 5000

Srinivasa Reddy et al : An Overview Report On Software Re- And Reverse... 73

Sum=13000

This is the Output of addition program. Here we
have to test the program using all possible test cases.

When we are trying to add two numbers, it’s
important to consider the range of values of individual
variables.

In the example, all salary, basic and da has the
values of 32768 to 32767. Here in the program, if
the salary don’t exceeds 32767, This program will work
fine, what happens if salary exceeds 32767.

So we have to change this program or
re-engineer the program to store more values:

Unsigned int a, b, c;
Changing the program depends on the time and

circumstances of the customer and here the variable
salary.

What is the meaning of Reverse engineering in
this case?

When ever we compile a program .BAK and
.EXE files are created along with .C program. In case
of lost code or lost documentation of related to code
or lost of .BAK and .C files. We can understand the
program thru .EXE files. We can observe the display
statements and we can find out the statements in the
code. Analyzing the output also informs the
programmer about break points and necessary action
to improve the program quality.

Hence we can say that Re-Engineering along
with Reverse engineering helps a programmer or
Software Engineer or Developer to make quality
product which will be satisfied by different customers
according to time and place.

V. CONCLUSION
A software engineer performing a reengineering

activity must typically understand and manage three
forms of information:

The structure of the existing source,

The structure of the desired reengineering
source, and

The relationship between the reengineered
and existing structures.

Existing source code analysis and reverse
engineering tools do not provide adequate support to
the engineer in all of these dimensions.

Whereas traditional software engineering primarily
focuses on “doing it right the first time,” reverse
engineering addresses the expensive area of
maintenance, where one pays the cost of not having
done it right the first time, or allowing it to decay over
time. Software reverse engineering, or

Program comprehension is the difficult task of
recovering design and other information from a
software system. It is difficult to perform because there
are intrinsic difficulties in performing the mapping
between the language of high level design
requirements and the details of low level
implementation. Although reverse engineering depends
heavily on the human in the loop, there are a variety
of automation methodologies available for support.

REFERENCES
 [1] B.W. Boehm, Software Engineering Economics,

Prentice-Hall, Englewood Cliffs, NH, 1981.
 [2] E.J. Chikofsky and J. H. Cross, II, “Reverse

Engineering and Design Recovery: A Taxonomy,” IEEE
Software, vol. 7, no. 1, pp. 13-17, January 1990.

 [3] M. Hammer and J. Champy, “Reengineering the
Corporation: A Manifesto for Business Revolution,”
Harper- Business, New York, 1993.

 [4] K. Kamper and S. Rugaber, “A Reverse Engineering
Methodology for Data Processing Applications,”
Georgia Tech Technical Report GIT-SERC-90/02,
March 1990.

 [5] Software Engineering, A practitioner’s Approach- Roger
S. Pressman, 6th edition.McGrawHill International
Edition.

 [6] Software Engineering- Sommer ville, 7th edition,
Pearson education.

Mr. A.Srinivas Reddy
received B.Tech from JNTU,
Hyderabad and M.Tech from
Sathyabama University, Chennai.
He has published more than 15
papers in both international and
National Conferences/Journals.
His research interest includes
Software Engineering, Mobile

Ad-Hoc Networks and Data Mining.

74 International Journal on Information Sciences and Computing, Vol. 5, No.1, January 2011

